不像人工智能冬天的黑暗时期,那时数据有限、计算机很慢,现在我们到处都能看到成功的人工智能系统。谷歌翻译肯定不会像人类翻译员那样好,但是它经常能够提供一个可用的翻译结果。尽管语音识别系统还没有达到随处可见的程度,也也已经是司空见惯的了,且其准确度令人惊叹;一年前谷歌声称安卓手机可以正确无误地理解 92% 的问题。如果一台计算机能够准确地将问题转化为文本,那么下一步就是把问题变成答案。
同样,图像识别和图像处理也已经变得司空见惯。尽管存在一些被广泛报道的尴尬错误,计算机视觉系统能够以在几年前还不可想象的精确度来识别人脸。
理所当然地,对此问题的适宜约束在其成功中起着巨大作用:Facebook 可以识别照片中的面孔,是因为它假定照片里的人很可能是你的朋友。计算机视觉是(或将是)从寻常到可怕等各种层次的人工智能应用的中心。视觉显然是自动驾驶车辆的关键;它对于监控、自动锁定无人机和其他不令人舒服的应用也同样重要。
深度学习和神经网络在过去的一年里已经吸引了大量的关注:它们已经实现了计算机视觉、自然语言和其他领域的进步。
然而几乎所有打着机器学习旗号的都是人工智能:分类与聚类算法(classification and clustering algorithms)、各种决策树(decision trees)、遗传算法(genetic algorithms)、支持向量机(support vector machines)、分层式即时记忆(HTM:hierarchical temporal memory)等等。
这些技术可以被自己使用,也可以与其他技术结合使用。IBM 的沃森是集成学习(ensemble learning)一个很好的例子:它是一个基于规则的系统,并依据所要解决的问题来结合使用其他算法。这个规则在很大程度上是手工制定的,而其他算法则需通过精心调整来获得良好效果。
像 Watson 一样令人印象深刻的、需要大量手动调整的系统是一块通向智能道路上的最好的踏脚石。任何的通用人工智能和大多数的狭义人工智能系统都将可能结合多种算法,而不是使用单一的、尚未被发现的主算法。
但这种用来得到良好结果的调整是一个主要的限制:AlphaGo 团队负责人 Demis Hassabis 说这样的调整「几乎像是一种艺术形式。」如果取得好结果需要花几年时间,并且只有一些专家(Hassabis 说有几百人)有能力做这项工作,那么它还是「人工智能」吗?
类似 Watson 这样的引擎的创造过程是科学,然而也需要许多艺术。另外,手动优化的需求表明人工智能系统的建立方式本质上是狭隘的,只能解决单一的问题。很难想象去优化一个能够解决任何问题的「通用智能」引擎。如果你正在做这件事,那么几乎可以肯定,那是一些特定应用。
人工智能方面的进步取决于更好的算法,还是更好的硬件?如果这个问题还算有意义,那么答案就是「同时」。即使 GPU 进展的时间速率已经停止,我们把更多东西塞进一张芯片的力还没有停滞:AlphaGo 的 280 个 GPU 能够轻松平均 20 万个核心。
更重要的是,我们已经看到了许多用于 GPU 的数学库和工具方面的改进。我们可能还会看到 ASIC(application-specific integrated circuit )和 FPGA( field-programmable gate arrays)在未来的人工智能引擎中的使用。反过来,ASIC 和 FPGA 将成为在许多需要硬实时状态(hard real-time)运行的硬件系统(想想自动驾驶汽车)中嵌入人工智能的关键。
但即使有了更好的硬件,我们仍然需要分布于成千上万个节点中的算法;我们需要能够飞速地重新编程 FPGA 的算法,以适应待解决问题所使用的硬件。MapReduce 在数据分析中很流行是因为它提出了一个并行化一大类问题的方法。
并行显然在人工智能中起作用,但它的限制是什么?并行的残酷现实是,其不可被并行的部分能把你折磨死。而大多数并行算法的标志是,你需要一个用以收集部分结果并产生单一结果的阶段。AlphaGo 在计算下一步棋时可能正在查看成千上万个选择,但在某一点上,它需要浏览所有的选项,评估哪个是最好的,并给出一个单一结果。
AlphaGo 可以利用 280 个 GPU 的优势;那么一台有 280,000 个 GPU 的计算机怎么样?毕竟,迄今为止我们所制造的最大计算机的计算能力只相当于一只老鼠大脑的一小部分,更不要说与人类相比了。如果是不依赖于并行设计和神经网络的算法呢?在一个路线中的每个元素都采取不同方法来解决问题的系统当中,你如何运用反馈?像这样的问题有可能在不久的将来推动人工智能的研究。
在人工智能算法中使用更多(更快)的硬件有可能使我们获得更好的围棋手、国际象棋手和 Jeopardy 玩家。我们将能更快更好地分类图像。不过这是我们目前可解决问题的一项改进而已。更多计算能力将会把我们从监督学习领到无监督学习吗?它会把我们从狭义的智能引到通用智能中吗?这还有待观察。无监督学习是一个难题,而且我们并不清楚能否只通过使用更多硬件来解决它。我们仍然在寻找一个可能并不存在的「主算法」。
(责任编辑:王翔)
声明:文章版权归原作者所有,本文摘编仅作学习交流,非商业用途,所有文章都会注明来源,如有异议,请联系我们快速处理或删除,谢谢支持。
(原文章信息:标题:人工智能系统未来产生结果,作者:张雪,来源:未知,来源地址:)